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We consider an asexual population evolving on rugged fitness landscapes which are defined on the multi-
dimensional genotypic space and have many local optima. We track the most populated genotype as it changes
when the population jumps from a fitness peak to a better one during the process of adaptation. This is done
using the dynamics of the shell model which is a simplified version of the quasispecies model for infinite
populations and standard Wright-Fisher dynamics for large finite populations. We show that the population
fraction of a genotype obtained within the quasispecies model and the shell model match for fit genotypes and
at short times, but the dynamics of the two models are identical for questions related to the most populated
genotype. We calculate exactly several properties of the jumps in infinite populations, some of which were
obtained numerically in previous works. We also present our preliminary simulation results for finite popula-
tions. In particular, we measure the jump distribution in time and find that it decays as t−2 as in the quasispecies
problem.
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I. INTRODUCTION

The question of mode in evolution, especially in the con-
text of speciation, has engaged the attention of many evolu-
tionists for over a century and continues to do so �1�. The
issue is whether evolution occurs by smooth gradual changes
�gradualism� as put forwarded by Darwin, or sudden large
jumps �punctuationism� �2,3�. Some examinations of fossil
record indicate that new species can arise by either mode, or
even by a combination of the two �4�. However, a complete
and unambiguous answer is hard to obtain at the level of
macroevolution due to the incompleteness and irreproduc-
ibility of the fossil data. In the last decade or so, researchers
have become interested in carrying out long-term evolution
experiments in the laboratory �5�. Typically, one starts with a
microbial population maladapted to a given environment
such as a colony of starving bacteria, and track its evolution-
ary trajectories for thousands of generations as it undergoes
adaptive changes. The results of such experiments have been
found to be consistent with both modes of evolution. For
instance, large populations of RNA virus starting from a low
fitness ancestor have been seen to gain fitness in a continu-
ous manner �6�. On the other hand, the fitness of bacteria E.
Coli �7,8� and RNA virus �6 �9� show a punctuated pattern
of evolution.

Theoretically, these results are understood using the con-
cept of fitness landscape �10–12� defined as a map from the
genotypic space into the real numbers. If the fitness land-
scape is smooth and single peaked, starting from a low fit-
ness state the population fitness increases gradually until it
has reached the peak value �13�. The dynamics are different
for a population moving on a rugged fitness landscape with
multiple peaks �14�. In this case, the population fitness in-
creases smoothly until the population encounters a local fit-
ness peak where it gets trapped as a better peak is separated
by a fitness valley. The population thus enters the stasis
phase and waits until a favorable mutation allows it to shift
to a better peak where it can again get localized and so on.
Thus, the dynamics alternate between periods of stasis and

rapid changes in fitness when the population jumps from a
peak to an even better one. An example of this behavior is
shown in Fig. 1.

That the fitness landscape underlying the evolutionary
process is multipeaked is supported by several experiments
�7,9,15–18�. Besides, these landscapes include biologically
important and ubiquitous epistatic interactions �19� as the
contribution of individual genes to the fitness of the genotype
is not independent �14�. The class of landscapes considered
in this work are maximally rugged and characterized by
strong selection �20�. In statistical physics, such rugged land-
scapes with a large number of local optima have appeared in
the context of spin glass theory. Examples include the ran-
dom energy model �21� and the Sherrington-Kirkpatrick
model �22� where the energy of a spin configuration plays
the role of genotypic fitness and the metastability in the spin
glass dynamics can be viewed as punctuated equilibrium
�23�.

We are interested in the statistics of jumps which occur
when the population fitness changes rapidly. As illustrated in
Fig. 1, an unambiguous way of defining a jump at time t is
the change in the fitness or identity of the most populated
genotype at t. The problem of such leadership changes arises
in several other contexts such as change in the position of the
optimal end point of the directed polymer �24�, highest de-
gree node in a growing network �25,26�, and velocity and
position of the front particle in a single-file system �27,28�.
In the following sections, before analyzing the realistic case
of finite populations, we will study the infinite population
limit in detail. We consider the dynamics of Eigen’s model
�29� that describes the population dynamics of self-
replicating molecules which at low mutation rates and large
times form a dynamic and heterogeneous quasispecies con-
sisting of the fittest genotype and its closely related mutants.
The existence of such an error threshold is a generic result
seen in both simple and complex fitness landscapes, and has
been reviewed in Ref. �30� �for recent related works, see
Refs. �31–34��. The focus of this paper is, however, the dy-
namics of the quasispecies model. We show that the popula-
tion fraction at a genotype obtained within a simplified shell
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model �35� �also see Ref. �36�� of quasispecies dynamics is
good only for highly fit sequences and at short times. How-
ever, the behavior of the most populated genotype is cap-
tured correctly by the shell model. We calculate exactly some
properties of the jumps �as defined above� within the shell
model which were obtained numerically in previous works
�35,37,38�. Specifically, we show that the jump distribution
decays as 1/ t2 in time and 1/�k as a function of the distance
k from the starting genotype for a class of fitness landscapes.

The basic difference between a finite and infinite popula-
tion is that while the former has a finite mutational spread in
the genotypic space, all the mutants are available at all times
in the quasispecies limit. Due to this reason, at large times, a
finite population gets trapped at a local fitness peak and the
jump probability is governed by the rate of stochastic tunnel-
ing �39,40� which allows the population to cross the fitness
valley via few low fitness mutants. In the quasispecies
model, on the other hand, the reproduction or selection plays
a more important role than the production of mutants and a
jump occurs when the population at a fit genotype overtakes
the less fit one. Although the underlying physical processes
responsible for a jump are different for finite and infinite
populations, we find that the jump distribution is robust in
that it decays as 1/ t2 in both the cases.

The plan of the paper is as follows. In the next section, we
define a class of mutation-selection models. Section III dis-
cusses the dynamics of the quasispecies model and the shell
model. We calculate exactly the statistics of jumps within the
shell model in Sec. IV. These results for infinite population
limit are compared with those obtained in simulations of
finite population in Sec. V. Finally, we conclude with a sum-
mary of our results.

II. MODELS

We consider a haploid, asexual population of size N each
of whose constituents carry a string �= ��1 , . . . ,�L� of length
L where �i can assume ��2 values. The string � can repre-
sent a genetic sequence ��=4�, protein ��=20�, or a se-
quence of L loci with � alleles �30�. For simplicity, we will

deal with binary sequences for which �=2 and �i=0 or 1.
The environment of the population is represented by a fitness
landscape which is obtained by associating a non-negative
real number W��� to each sequence. In this article, we con-
sider fitness W��� to be a random variable chosen indepen-
dently from a common distribution p�W�. This generates a
maximally rugged fitness landscape with an exponentially
large number �in L� of local maxima �14,41� and strong in-
teractions amongst the loci �20�. The population evolves on
this fitness landscape in discrete time via selection and mu-
tation, and we ignore other factors responsible for genetic
mixing such as recombination. Our model is thus applicable
to microorganisms like E. Coli and Hepatitis C virus which
have zero or very low recombination rates �42�.

Consider a population well adapted to a given environ-
ment localized around a peak of the fitness landscape. A
change in the environment brings about a change in the fit-
ness landscape, and the population will typically find itself in
a fitness valley. We consider the adaptation process of the
population starting from such an initial condition. The popu-
lation fraction X�� , t� of sequence � at time t is iterated
using Wright-Fisher dynamics defined as follows. In each
generation, an offspring selects a parent p with probability
Wp��� /N�W	, where Wp��� is the fitness of the parent p with
sequence � and �W	=
��W����X��� , t� is the average fitness
of the population. Then the probability P�n� that parent p has
n offspring in one generation is given as

P�n� = �N

n
��Wp���

N�W	
�n�1 −

Wp���
N�W	

�N−n

.

This implies that the average number of offspring produced
equals W��� / �W	 and hence the fitness W��� has the physi-
cal meaning that it is proportional to the number of descen-
dants produced per generation. Further, as the relative vari-
ance in the offspring number decays as 1/N, it follows that
the offspring number fluctuates from one generation to an-
other for finite population, but one can ignore these fluctua-
tions arising due to random sampling for N→�. After the
reproduction process, point mutations are introduced inde-
pendently at each locus of the sequence �� with probability
� per generation. Thus, a sequence � is obtained via muta-
tions with the probability

p�←�� = �d��,����1 − ��L−d��,���, �1�

where the Hamming distance d�� ,��� is the number of point
mutations in which the sequences � and �� differ.

Since the selection process is not stochastic for infinite
populations, the population frequency also does not fluctuate
and one can work with the average frequency X�� , t�
= �X�� , t�	 where the averaging is over all realizations of the
sampling process. This leads to a deterministic nonlinear
equation for the fraction X�� , t� �20�,

X��,t + 1� =

��

p�←��W����X���,t�


��
W����X���,t�

, �2�

where the denominator is the normalization constant.
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FIG. 1. �Color online� Punctuated change in the population fit-
ness ��� and the fitness of the most populated genotype �+� in a
single realization of a maximally rugged fitness landscape. Here L
=6, N=214, �=10−6, p�W�=W−2.
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III. DYNAMICS OF THE QUASISPECIES
AND SHELL MODELS

The focus of this section is the quasispecies model and the
related shell model. In the following, we will mainly work
with the unnormalized population Z�� , t� defined as �30�

Z��,t� = X��,t�

�=0

t−1



��

W����X���,t� �3�

in terms of which the nonlinear evolution �2� reduces to the
following linear iteration:

Z��,t + 1� = 

��

p�←��W����Z���,t� . �4�

Since at the start of the adaptation process the population
finds itself at a low fitness genotype, we start with the initial
condition X�� ,0�=Z�� ,0�=��,��0�, where ��0� is a randomly
chosen sequence. For small mutation probability � ��10−3

−10−10� as seen in various asexual microbes �30,43�, after
one iteration we have

Z��,1� = �d��,��0��W���0�� . �5�

Thus each sequence gets populated in one generation with a
fraction which is same for all the sequences in a shell of
constant Hamming distance d�� ,��0�� from the initial se-
quence ��0� �35�. Numerical simulations of Ref. �35� showed
that dynamical properties involving the most populated
genotype, such as the distribution of evolution times and
number of jumps, are very well described by a simplified
model which ignores mutations for further evolution and al-
lows the population at each sequence to grow with its own
fitness. Thus, within the shell model, the population Z�� , t�
��d��,��0��Wt��� for t	1.

Here we provide an analytical understanding of the qua-
sispecies model leading to the shell model. We will find that
the expression for Z�� , t� in the shell model is a good ap-
proximation for sequences with high fitness and at short
times. For t	1, consider �4� for a sequence � in the shell d
centered about ��0� and at a Hamming distance d�� ,��0��
from the center. The sum on the right-hand side of �4� has
three kind of terms: �i� sequence � does not mutate �i.e.,
��=� in the sum� so that its contribution 
�d��,��0��, �ii� a
mutation occurs in ��� I where I is the set of ��’s lying
inside shell d that satisfy d�� ,���+d��� ,��0��=d�� ,��0�� re-

sulting in �d��,��0�� dependence, and �iii� a mutation occurs
either in the sequences in the inner shells that do not belong
to set I or, in the sequences in and outside shell d giving a
term of order �d��,��0��+1 and higher. In order to obtain
Z�� , t� to order �d��,��0��, we can neglect the last contribution
and iterate the population according to

Z��,t + 1� = W���Z��,t� + 

���I

�d��,���W����Z���,t� .

�6�

The above equation is still coupled, but one can make
further simplifications by proceeding as follows. Let us first

consider the zeroth shell, i.e. sequence ��0� for which we
immediately have

Z���0�,t� = Wt���0�� . �7�

For the sequences in the first shell for which d�� ,��0��=1,
the sequence ��0� is the only member of set I and we have

Z��,t + 1� = W���Z��,t� + �Wt+1���0��, d��,��0�� = 1.

�8�

Defining Z�� , t�=Wt���z�t�, we obtain a simple difference
equation for z�t� which can be iterated to give

z�t� = �r + �r21 − rt−1

1 − r
, r =

W���0��
W���

.

If W���	W���0��, the population Z�� , t� grows exponen-
tially fast with a rate equal to its own �log� fitness whereas in
the opposite case, this growth rate is that of the initial se-
quence. For the sequences in the first shell, one therefore
obtains

Z��,t� = ��W���0��Wt−1���, r � 1

�Wt���0��, r 	 1.
�9�

For the succeeding shells, one can work out the population
Z�� , t� in a manner similar to above and find that Z�� , t�
��d��,��0��Wt��� if the fitness W��� is larger than that of all
the sequences in set I. Such a random variable whose value
is larger than all the ones preceding it defines a record
�37,38�. If the fitness W��� is not a record, then the growth
rate is given by the largest �log� fitness of sequences in set I,
i.e. the last record value.

A comparison of the results obtained using the above ap-
proximations with the exact iteration of �4� is shown in Fig.
2 for the initial sequence and some representative sequences
in the first shell. The disagreement at large times occurs be-
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FIG. 2. �Color online� Comparison of the logarithmic population
fraction ln Z�� , t� obtained by iterating exact equation �4� �shown
by points� and the shell model dynamics �7� and �9� �shown by
lines� for �=10−4. The fitness W is chosen from a common expo-
nential distribution for a sequence of length L=10. The subscript in
Z gives the fitness rank where the largest fitness carries rank 0 and
the population initially starts at a sequence with rank 788. All the
other sequences are at Hamming distance 1 from ��0�.
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cause �7� and �9� are obtained to leading order in �, and after
some time as the population at the outer shells grow, the next
order terms in � start contributing. For the zeroth shell, this
happens at time � when the next order terms �Z�� ,�� due
to sequences in shell 1 become as large as the lowest order
term given by �7�, i.e. W����0����2W���*� where W��*�
	W���0�� is the largest fitness in shell 1. Plugging in the
fitness values of relevant sequences in this expression for the
fitness landscape in Fig. 2, we obtain ��8 in good agree-
ment with the exact iteration. After time �, the population at
��0� grows with the fitness W��*� until shell 2 starts contrib-
uting. This argument can be generalized to higher shells
straightforwardly. For instance, the correction to �9� is of
order �3 which arises either due to the sequences in the first
shell but two mutations away from � or the sequences in the
second shell that are one mutational distance away. The
larger of the two contributions can be then used to estimate
the time at which the growth rate changes. This process of
slope changes of logarithmic population goes on until the
globally fittest sequence ��f� becomes most populated after
which the population Z�� , t���d��,��f��Wt���f��.

In Fig. 2, the initial sequence with rank 788 remains most
populated until �5 time steps after which the sequence
ranked 23 overtakes it and becomes the next leader. We are
interested in such leadership changes and will use the shell
model for this purpose as it correctly captures the dynamical
behavior of the most populated genotype. Recall that in the
shell model, the population at each sequence grows with its
own intrinsic fitness for all t	1. These population dynamics
are different from quasispecies in which the population of a
sequence whose fitness is not a record grows with the fitness
of the last record �in inner shells� at short times and the
growth rate of the sequences change as the leading genotype
changes in course of time. However, since the population at
such sequences is always at least order � smaller than that at
the leading genotype, the dynamics of the most populated
sequence are not affected if the population at such sequences
is also allowed to grow with their respective fitness.

After these considerations, we arrive at the shell model in
which the logarithmic population obeys the following linear
time evolution:

ln Z��,t� = ln W���0�� − �ln ��d��,��0�� + ln W����t − 1� .

�10�

Calling F���=ln W��� and rescaling time by �ln ��, we have

E��,t� = − d��,��0�� + F���t , �11�

where we have absorbed the extraneous factors in the defi-
nition of logarithmic population E�� , t�. Since the population
at t=1 is same for sequences at constant d�� ,��0��=k, only
the sequence with the largest fitness in shell k needs to be
considered �35�. If the logarithmic fitness F is distributed
according to the distribution p�F�, then the largest fitness
F�k� in shell k which is the maximum of �k= � L

k
� variables is

distributed independently but nonidentically with distribution

pk�F� = �kp�F���
Fmin

F

dF�p�F����k−1

, �12�

where Fmin is the lower support of the distribution p�F�.

IV. STATISTICS OF JUMPS IN
THE SHELL MODEL

In the following, we will consider the shell model dynam-
ics defined as

E�k,t� = − k + F�k�t , �13�

where F�k� and E�k , t�, respectively, are the fitness and popu-
lation of the sequence with the largest fitness in shell k
=0, . . . ,L. Figure 3 shows the population E�k , t� as a func-
tion of time for k=0, . . . ,4 as the global maximum of the
fitness landscape in Fig. 2 lies at a Hamming distance 4 from
the initial sequence. Since a line E�k , t� intersects E�k� , t� at
a time

T =
k� − k

F�k�� − F�k�
, �14�

and as F�1�	F�0�, the population of the sequence in shell 0
is overtaken by the one in shell 1. However to become a
most populated genotype, it is not sufficient to have a record
fitness. As Fig. 3 shows, although F�2�	F�1�, the popula-
tion E�2, t� overtakes E�1, t� later than E�3, t�, losing the
evolutionary race. Thus, only those set of sequences become
leader that manage to overtake the current leader in the least
time amongst all contenders. Finally, the globally fittest se-
quence E�4, t� catches up with E�3, t� and the population
localizes at the global peak �35,38�.

The shell model defined by �13� describes a population
growing linearly in time with a slope equal to the fitness F�k�
chosen from the distribution pk�F�. A simpler version of this
model in which the fitness F�k� is assumed to be independent
and identically distributed �i.i.d.� variables with distribution
p�F� have also been considered �35,38�. Several properties of
this model have been recently calculated via a mapping to a
first-passage problem �44� and considering it as a system of

-4

0

4

8

12

16

20

0 2 4 6 8 10 12

E
(k

,t)

t

FIG. 3. �Color online� Shell model dynamics for population
E�k , t�=−k+F�k�t for k=0, . . . ,4 for the landscape in Fig. 2. The
sequence with the largest fitness in shell 2 gets bypassed by the
corresponding sequence in shell 3.
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hard-core particles undergoing elastic collisions �27�. In par-
ticular, it has been shown that the average number of jumps
grows as 
 ln L where the prefactor 
�1 and depends on
the choice of p�F�. In both of these approaches, the initial
condition �the intercept� of E�k , t� is not fixed and is a uni-
formly distributed random number on the real line. In this
paper, we present a way to calculate average number J of
changes in k* which respects the discreteness of the underly-
ing genotypic space. We will perform the calculations for the
shell model for which the fitness is nonidentically distrib-
uted, although our method is readily applicable to the i.i.d.
model also. However, we mention that the prefactor 
 cal-
culated using our method turns out to be the same as in the
analysis of �27,44�.

A. General formulas

To calculate the statistics of jumps, we need two basic
distributions: �i� the probability Pk�F , t� that the most popu-
lated sequence in shell k with fitness F is the leader at time t,
and �ii� the probability Wk�,k�F , t�dt with which this sequence
is overtaken by the most populated sequence in shell
k��	k� between time t and t+dt. The distribution Pk�F , t�
requires that the population E�j , t��E�k , t�, j�k which im-
plies that the fitness F�j��F+ �j−k� / t. Since the fitnesses of
the most populated sequence in each shell are independent
random variables, we have

Pk�F,t� = pk�F� 

j=0
j�k

L �
Fmin

F+�j−k�/t

dF�pj�F�� . �15�

To find Wk�,k�F , t�, we need to determine the fitness of the
most populated sequence in shell k��	k� which can contrib-
ute to the overtaking event. Let us denote the location of the
leader at time t by E�t�,

E�t� = − k + Ft .

Then the sequence in shell k� can overtake the kth one at t if
the fitness F�k��= �E�t�+k�� / t. Similarly, the sequence in the
kth shell can be overtaken at t+dt, dt / t→0 if

F�k�� =
E�t + dt� + k�

t + dt
= F +

k� − k

t
−

k� − k

t2 dt + O�dt2� .

Thus the probability that a sequence in shell k is overtaken
by a sequence in shell k� between time t and t+dt is given by

Wk�,k�F,t�dt = �
F+�k�−k�/t−��k�−k�/t2�dt

F+�k�−k�/t
dFpk�F�

�
k� − k

t2 pk��F +
k� − k

t
�dt, k� 	 k . �16�

Finally, using the distributions defined in �15� and �16�, we
can write the probability Pk�,k�t� that the most populated se-
quence in shell k� overtakes the one in shell k at time t as

Pk�,k�t� = �
Fmin

Fmax

dFWk�,k�F,t�Pk�F,t� , �17�

where Fmax is the upper support of the distribution p�F�.

Depending on the quantity of interest, one can either in-
tegrate over time or sum over a space variable in Pk�,k�t�.
Often the experimental data such as a morphological feature
�4� or average fitness �5� are plotted as a function of time and
can be used to find the number of jumps in time. Therefore it
is useful to consider the distribution J�t� of a jump to occur
at time t which can be found by summing Pk�,k�t� over k
and k�,

J�t� = 

k=0

L



k�=k

L

Pk�,k�t� . �18�

The relationship between the overtaken and the overtaking
sequence can be deduced by computing the jump distribution
Jk that the most populated sequence in shell k is a jump
given by

Jk = 

k�=k

L �
0

�

dtPk�,k�t� . �19�

The average number J of jumps can be obtained by either
integrating J�t� over time or summing Jk over k.

In the previous works on shell models �35,37,38�, several
properties of the jumps have been studied numerically when
the fitness F is distributed according to an exponential or
Gaussian distribution. In the following subsections, we will
use the expressions derived above for the exponential case
which lends itself to a detailed analysis and then give some
results for fitness distributions decaying faster than an expo-
nential.

B. Exponentially distributed fitness

We consider p�F�=e−F for which the largest fitness in
shell k is distributed according to

pk�F� = �ke
−F�1 − e−F��k−1. �20�

Using this in �15�, we obtain the distribution that the leader
with fitness F is in shell k,

Pk�F,t� = �k� e−F

1 − e−F�

j=0

L

�1 − e−F+�k−j�/t��j

� �ke
−Fe−�1 + e−1/t�Le−F+k/t

, �21�

where the last expression is obtained by exponentiating the
product and keeping only the leading order terms in the ex-
pansion. Similarly, the overtaking rate �16� can be written as

Wk�,k�F,t� = �k�� k� − k

t2 �e−F+�k−k��/t�1 − e−F+�k−k��/t��k�−1

� �k�� k� − k

t2 �e−F+�k−k��/te−�k�e
−F+�k−k��/t

. �22�

Then the probability that the population in the k�th shell
exceeds the population in the kth shell at time t is given by
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Pk�,k�t� = �k�k�e
�k−k��/t� k� − k

t2 ��
0

1

dzze−z��k�e
−k�/t+�1 + e−1/t�L�ek/t

.

�23�

Neglecting the first term in the exponent of the exponential
in the integrand and carrying out the integral for large L, we
finally obtain

Pk�,k�t� �
�k�e

−k�/t

�1 + e−1/t�L

�ke
−k/t

�1 + e−1/t�L� k� − k

t2 � . �24�

We will now use this expression to calculate jump statistics.
Temporal behavior. Let us first consider the distribution

Pk�t� of a jump to occur in the kth shell at time t. Summing
Pk�,k�t� over k�, we obtain �45�

Pk�t� =
�ke

−k/t

t2�1 + e−1/t�2L 

k�=k

L

�k� − k��k�e
−k�/t

=
�ke

−k/t

t2�1 + e−1/t�2L

��L + 1�e−�k+1�/t

��L − k���k + 2�

�2F1�2,k + 1 − L;k + 2;− e−1/t� �25�

where ��n� is the gamma function and 2F1�a ,b ;c ;z� is the
hypergeometric function. We point out that the distribution
Pk�t� gives the probability that E�k , t� is overtaken at t and
hence differs from the distribution that E�k , t� is the largest at
time t considered in Ref. �38�. The function Pk�t� is plotted
as a function of time for various values of k in Fig. 4. To gain
some insight into the behavior of this distribution, we calcu-
late the above sum using saddle point approximation. Using
the Stirling’s formula for binomial coefficient

�L

k
� �� L

2�k�L − k�
LL

kk�L − k�L−k �26�

in �25� for �k� and approximating the sum over k� by an
integral, we have

�
k

L

dk��k� − k�e−f�k��

�
��e−k0�/t

f��k0��
� L

k0�
����k��erf���k�� − erf���L���

+� 1

�
�e−�2�k� − e−�2�L��� ,

where we have estimated the integral using the saddle point
method. In the above expression, f�k��= �k� / t�−ln �k�, f��k0��
is the second derivative of f�k�� evaluated at the minimum
k0� of the function f�k�� and the deviation ��k��= �k�
−k0���f��k0�� /2. Explicitly,

k0� =
L

1 + e1/t ,

f��k0�� =
L

k0��L − k0��
=

�1 + e1/t��1 + e−1/t�
L

,

��k� = �k − k0��� f��k0��
2

.

Approximating the factor �ke
−k/t in �25� also by a Gaussian

in a manner similar to above, we finally have

Pk�t� =
e−�2�k�

2��t2
���k��erf���k�� − erf���L���

+� 1

�
�e−�2�k� − e−�2�L��� . �27�

Using this expression, it is easy to obtain the typical shell
location of the sequence overtaken at time t by integrating
kPk�t� over k. Since Pk�t� is normalized to J�t�, we find that
given an overtaking event occurs at t, the average location of
the overtaken sequence scales as k0� with a standard deviation
of order 1 /�f��k0�� about it. This length scale can also be
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FIG. 4. �Color online� Jump statistics for p�F�=e−F. Left: Distribution Pk�t� given by �25� for fixed k /L=0.3 in support of �28� for L
=500 �solid� and 1000 �dotted�. The inset shows the 1/ t2 dependence of Pk�t� for k=450, L=1000. Right: Distribution Pk�,k given by �32�
for k=50, 75 and 100 �left to right� and L=1000.
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expressed in terms of time for fixed k as the distribution
Pk�t� is maximized at ��k�=0 or k0��t�=k. Thus for large L,
the time Tm.p. at which Pk�t� is most probable is given by

Tm.p. = �ln�L − k

k
��−1

. �28�

This means that a sequence with k�O�L� is most likely to
be overtaken in a time of order unity. This fact is also ex-
pressed in Fig. 4 which shows the distribution Pk�t� at fixed
k /L as a function of time. The time scale Tm.p. can be under-
stood by a simple argument which estimates the intersection
time given by �10�. This argument is analogous to that used
in Refs. �20,35,38� where the fitness difference in the de-
nominator of �10� is given by the typical value of the fitness
gap which probes the rare events. As we are interested in the
most likely events, the denominator is approximated by the
difference in the average value of the largest fitness in shell
k� and k. From �20�, we see that the average largest fitness
goes as ln �k. Since typically the most populated sequence in
shell k is overtaken by a sequence located O��k� distance
away �38� �also see below�, the numerator of �10� scales as
�k and the denominator ln��k� /�k�on using the Stirling’s for-
mula turns out to be �k ln��L−k� /k� thus leading to �28�.

Although the most probable value of the overtaking time
is of order one, the average overtaking time is infinite due to
the fat tail of the distribution Pk�t�. For t�1, we can ap-
proximate ��k� by �2k−L� /�2L and using the asymptotic
expansion of error function for large argument �46�,

erf�x� =
2

��
�

0

x

dye−y2
= 1 −

e−x2

��x
�1 −

1

2x2 + ¯ � , �29�

we obtain

Pk�t� �� L

2�

�

t2e−L�2/2, � = 1 −
2k

L
	 0. �30�

Due to the t−2 behavior at large times shown in the inset of
Fig. 4, the mean time diverges for any L and k�L /2 �see
below�. The tail of this distribution is exponentially sup-
pressed in L for finite � but goes as �L� / t2 for k close to L /2.
The late time behavior above is also obtainable from �10� by
a simple change of variables �35,38�.

After performing the integral over k in �27�, we obtain

J�t� =� L

4�

1

t2 sech� 1

2t
� . �31�

Integrating J�t� over time from 0 to infinity, we find that the
average number of jumps grows as �L� /2.

Spatial behavior. One can also find the probability J�k�
that the most populated sequence in the kth shell is a jump.
As we are not interested in temporal distribution, the integral
over time in �24� can be carried out to give the probability
that the sequence in shell k is overtaken by that in shell k�,

Pk�,k = �
0

�

dtPk�,k�t�

=
k� − k

k� + k
�L

k
�� L

k�
�2F1�k + k�,2L;k + k� + 1;− 1� .

�32�

This distribution is shown for some representative param-
eters in Fig. 4. Approximating the integrand Pk�,k�t� in the
above equation by a Gaussian centered about inverse time
t−1=−ln��k�+k� / �2L−k�−k�� and carrying out the integral,
we obtain

Pk�,k �
L�k� − k�

�k + k���2L − k� − k�
�L

k
�� L

k�
�� 2L

k� + k
�−1

��1 + erf���k + k���2L − k − k��
4L

�ln�2L − k� − k

k� + k
��� . �33�

The argument of the error function changes sign when k�
+k=L. For k�+k	L, the argument is negative and of order
�L�1. Using �29�, we find that the last factor in �33� is
exponentially small in L for k�	L /2 ,k�k�. Thus the prob-
ability that the overtaking sequence k� lies beyond the shell
L /2 is negligible. This is understandable as the globally fit-
test sequence is typically located in the shell k=L /2 �38�. For
k ,k��L /2, the error function in �33� can be approximated
by unity, and the probability distribution Pk�,k can be further
simplified to give

Pk�,k �� L

�k�L − k�� k� − k

2k
�e−L�k� − k�2/4k�L−k�,

k � k� � L/2 �34�

where we have used the Gaussian approximation for the bi-
nomial coefficients. This form of the distribution implies that
the overtaking sequence k� is located within O��k� distance
of the overtaken sequence k. Thus the typical spacing be-
tween successive jumps for large k is roughly constant and
goes as �L as seen in the numerical simulations of Ref. �38�.
The jump distribution Jk for a jump to occur in shell k is
obtained by integrating over k� and we have

Jk �� L

�k�L − k�
�H�L

2
− k� , �35�

where �H is the Heaviside step function. Thus the distribu-
tion Jk decays as k−1/2 for k�L in accordance with the
numerical results of Refs. �37,38�. Integrating the preceding
equation over k, we find that the average number of jumps
are given as �L� /2 in agreement with the previous calcula-
tion.

C. Gumbel-distributed shell fitness

We now consider p�F�=Ae−F�
, �	0, A=� /��1/�� for

which the distribution pk�F� of the largest of �k random vari-

EVOLUTIONARY DYNAMICS OF THE MOST POPULATED … PHYSICAL REVIEW E 76, 031922 �2007�

031922-7



ables for large L has the Gumbel distribution as the limiting
form �47�,

pk�F� =
1

Ck
e−�F−Bk�/Cke−e−�F−Bk�/Ck, �36�

where

Bk = �ln� �k

��1/����1/�

, Ck =
1

�
�ln� �k

��1/�����1−��/�

.

�37�

We will show that the tail of the distribution Pk�t� decays as
1/ t2 and the average number of jumps scales as �L for any
�	0.

The large time behavior of Pk�t� can be found by taking
t→� limit in �15� and �16� except for the 1/ t2 factor in rate
Wk�,k. We thus have

Pk�t� � 

k�=k

L
k� − k

t2

eBk�/Ck�+Bk/Ck

Ck�Ck

��
0

�

dFe−F/Cke−F/Ck�e−
j=0
L eBj/Cje−F/Cj,

t � Tm.p. �38�

after using the approximations similar to those used in arriv-
ing at �24�. The sum under the integral sign can be computed
by saddle point approximation so that the integral �up to
scale factors� is writable as

�
0

�

dzz� ln �k�
L ln 2

���−1�/�
+� ln �k

L ln 2
���−1�/�

−1e−z,

where we have neglected the logarithm of ��1/�� in Bk and
Ck for large L. Since we are interested in large times when
k→L /2, to leading order in �=1− �2k /L�, we find
ln �k /L ln 2�1, thus simplifying the expression for Pk�t� to
yield

Pk�t� = ��

t
�2��L

2
��−1

�L ln 2���−1�/���k

2L��



k�=k

L

�k� − k���k�

2L��

=� L

2��

�2�

t2 �L ln 2���−1�/�, t � Tm.p. �39�

where the last expression is obtained by estimating the
sum over k� using Gaussian approximation. For small �
��1/�L� and �=1, this expression reduces to �30� for expo-
nential distribution. For ��1, the L dependence in the pre-
ceding equation consists of two factors, the first one arising
because the typical separation k�−k�O��L� for large k
�35,38� and the last factor is due to 1/Ck, k=L /2 left after
scaling the fitness F in �38� by Ck�.

In order to find the average number of jumps, we first
need to calculate Tm.p. for arbitrary �. As argued in the last
subsection, Tm.p.

−1 is given as the derivative �with respect to k�
of the average shell fitness. From the scaling form �36�, we
see that the average shell fitness is proportional to Bk. For k

of order L, its derivative grows as Ck, k�L. Then integrating
Pk�t� over k and t, we find that the average number of jumps
scale as �L for all �	0. This result is also consistent with
the simulations for the Gaussian distribution in Ref. �37�.

V. JUMP DISTRIBUTION FOR FINITE POPULATIONS

We will now consider the dynamics of a population of N
individuals evolving according to the Wright-Fisher dynam-
ics described in Sec. II. Unlike the infinite population, a
population of size N initially localized at sequence ��0� can
spread up to a finite distance. This is since the typical frac-
tion of the population at a sequence � in one generation is
given as �d��,��0�� but as this fraction is bounded below by
1/N, it follows that the mutational spread deff= ln N / �ln ��
for a finite population. Thus while all the mutants are avail-
able in one generation for quasispecies �see �5��, only a finite
number is present at any time in real populations. If a more
fit sequence is available within this effective distance, the
population behaves like a quasispecies and evolves determin-
istically. This is possible for deff�1 and at short times �20�.
However, at long times, any finite population can get trapped
at a local peak if a more fit sequence lies farther out than deff.
In such an event, the population escapes the local peak via
the process of stochastic tunneling which takes a time given
by �39,40�

�T = �N�2L�Wloc,f − Wloc,i

Wloc,fWloc,i
��−1

�40�

for deff=1, where Wloc,�i,f� refers to the fitness of the initial
and final local peak separated by two mutations. During this
time, most of the population stays at the local peak with
fitness Wloc,i but a few less-fit mutants are produced by single
mutations. When some of these mutants further acquire a
favorable mutation, then the whole population quickly jumps
to the next local peak with higher fitness Wloc,f. The physical
process involved when a jump occurs in a finite population is
thus different from that in the quasispecies case. In the latter
case, each local peak is already populated albeit with a small
frequency, and a jump occurs when the population at a more
fit sequence overtakes the current leader.

We are interested in the jump distribution of large finite
populations with deff close to one. At large times when the
tunneling drives the dynamics, we expect the density J�t� of
jumps at t to scale as

J�t� �
1

�T
� N�2L

�w�t�
wi

2�t�
, �41�

where wi�t� is the typical fitness of the local peak visited at t
separated by a better peak with fitness difference �w�t�. We
expect �w to decrease and wi to increase with time as higher
peaks are explored. However, in the absence of an argument
for these time dependences, we present our preliminary nu-
merical results here. In the shell model, one does not have to
deal with the whole genotypic space consisting of 2L sites
and it suffices to work with the L shells, thus reducing the
computational effort enormously �35�. However, such a rota-
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tional symmetry is not present for the finite population prob-
lem so we are able to handle only small values of L. Our
numerical results for large finite populations and small L are
shown in Fig. 5 for exponentially distributed log fitness F or
p�W�=W−2, as in the previous sections. The data in Fig. 5 are
averaged over several histories as the evolutionary trajecto-
ries are not deterministic for finite populations �20�. For
fixed � and L, we find that at long times,

J�t� �
N

t2 , �42�

which decays the same way as in the quasispecies model,

J�t� � � ln �

t
�2

�L, t � 1, �43�

where we have reinstated the � dependence.

VI. CONCLUSIONS

In this paper, we discussed the evolution of asexual popu-
lations on rugged fitness landscapes with many local optima
separated by valleys. We focused on the statistical properties
of the most populated genotype which changes as the popu-
lation locates better peaks in the fitness landscape. These
properties were calculated exactly within a shell model
which was derived systematically from the Eigen’s quasispe-
cies model for infinite populations. We showed that the ex-
pression for the population frequency within the shell model
approximates the quasispecies solution well for highly fit
sequences and at short times only. However, the two models
are equivalent as regards the statistics of the most populated
genotype. We computed the average number of jumps in the
shell model and found that it grows as �L, L being the se-
quence length, for fitness distributions decaying as exponen-
tial or faster. The jump distribution in time was shown to
decay as t−2. This dependence is also seen numerically for
the finite population but a satisfactory explanation for this
case is presently missing. A more detailed analysis of the
finite population properties will be taken up in the future.
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